# **AVIAN INFLUENZA-A CURRENT PERSPECTIVE**

#### **PRESTAGE DEPT. OF POULTRY SCIENCE**

Simon M. Shane BVSc. FRCVS. Ph.D. MBL. ACPV February 10<sup>th</sup> 2015

# ECONOMIC IMPACT OF HPAI

#### • COSTS INCURRED FROM:

- BORDER CONTROL AND PERMITTING TO EXCLUDE AI.
- PREPAREDNESS, TRAINING, INFRASTRUCTURE, R & D.
- OUTBREAK CONTROL AND ERADICATION GOVERNMENT SECTOR PRIVATE SECTOR CONSUMERS
- DISRUPTION IN TRADE OF BREEDING STOCK, CHICKS AND PRODUCTS

## **FINANCIAL IMPACT OF HPAI**

- 1924 U.S.
- 1983 PA.

• 1999 ITALY

- \$ 10 m (2000 VALUE)
- \$ 110m (USDA-APHIS)
- \$ 25m (PRODUCERS)
- \$ 350m (CONSUMERS)
- **\$ 600m**
- 1985 Australia \$ 2m (SINGLE COMPLEX)

## **HISTORY OF HPAI**

- 1878 and 1894 Italy and other European countries (where recognized)
- 1901 Germany and neighboring nations, Chickens "Fowl plague"
- 1924 and 1929 U.S., Chickens (H7)
- 1959 Scotland, Chickens H5N1
- 1961 South Africa, Terns H5N3
- 1976 Australia Chickens H7N7
- 1983 U.S. (PA, MD) Chickens , Turkeys H5N2
- 1995 Pakistan, Chickens H7N3
- 1997 Hong Kong, Chickens etc. H5N1
- 1999 Italy, Chickens etc H7N1
- 2001 China and other Asian nations, Chickens etc H5N1
- 2003 Mexico, Chickens etc. H5N2

# **RECENT HPAI OUTBREAKS**

- 2003 Holland, Chickens H7N7
- 2012 Mexico, Chickens etc. H7N3
- 2013 Australia, Chickens H7N2
- 2014 Canada, (BC) Chickens etc. H5N2
- 2014 Russia, Chickens etc. H5N1
- 2014 India, Ducks and Chickens H5N8
- 2014 Korea, Japan, Ducks and chickens H5N8
- 2014 EU, Chickens, Turkeys and Ducks H5N8
- 2014 Taiwan, Ducks, Geese, Chickens H5N2 and H5N8 plus H5N3
- 2014 Canada, Chickens and Turkeys H5N2
- 2014/5 U.S. (OR, UT, WA, ID), wild birds, backyard flocks H5N2 & H5N8, H5N1
- 2015 Nigeria, Chickens H5N?
- 2015 Israel, Palestine, Bulgaria, Turkeys and Chickens, H5N1

## **HUMAN HEALTH SIGNIFICANCE**

- MAMMALS GENERALLY REFRACTORY TO AVIAN STRAINS
- Asia H5N1 from 2003 onwards
- Holland H7N7 in 2003
- China H7N9 2013 onwards
- Egypt H5N1 mid 2000's onwards
- Mild cases (conjunctivitis)
- Severe cases (respiratory complications and death)
- Marked decline in egg and chicken consumption

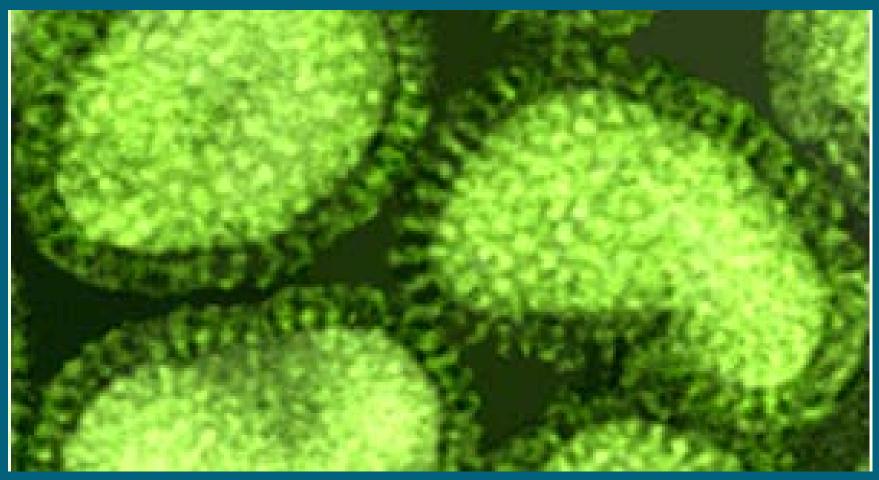
### CLOSE CONTACT WITH INFECTED FLOCKS RESULTSED IN H5N1 INFECTION IN GENETICALLY PREDISPOSED HUMANS

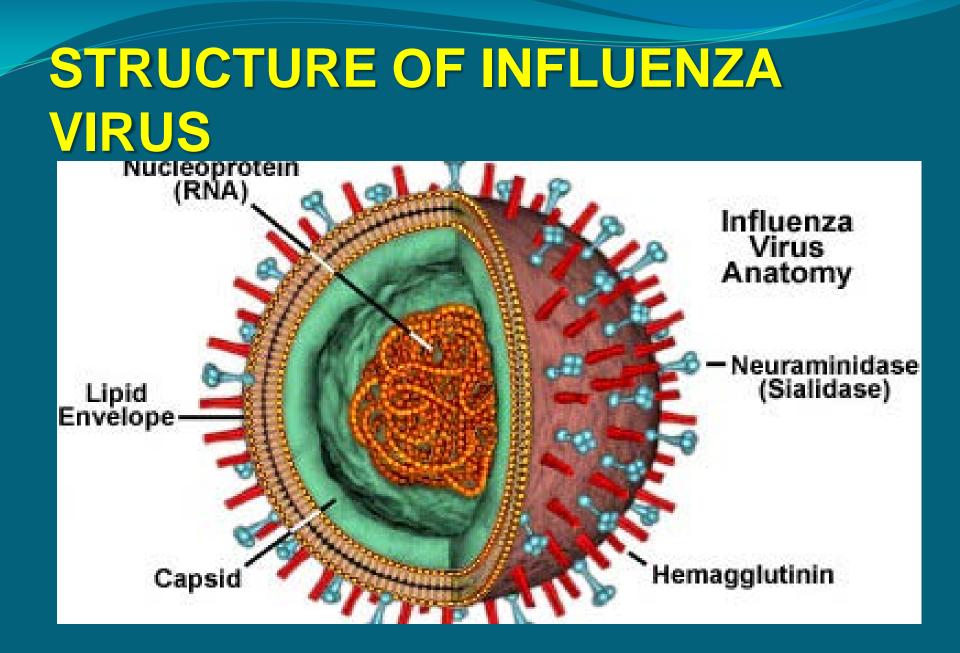


### MOST OF THE 500 CASES OF HUMAN H5N9 AI INFECTION HAVE BEEN DOCUMENTED IN CHINA WITH HIGH FATALITY RATES



### **AVIAN INFLUENZA VIRUS**


- Family: Orthomyxoviridae
- Genus: Influenzavirus A
- RNA virus with enveloped virion, 80-120 nm
- Eight single RNA strands coding for:-
- ✤ 1. PB 1 transcriptase
- **♦ 2. PB 2** endonuclease
- \* 3. PA **RNA replication**
- 🚸 4. HA attachment, envelope fusion, neutralization
- \* 5. NP **vRNA** synthesis
- ✤ 6. NA


virus elution,

✤ 7. M 1 & 2 virus budding

✤ 8. NS 1 & NS 2 translation of viral mRNA

### **EM VIEW OF AI ORTHOMYXOVIRUS SHOWING SURFACE HA AND NA GLYCOPROTEIN ANTIGENS**





### **AVIAN INFLUENZA NOMENCLATURE**

A / chicken/ Indonesia/ 4 / H7N8/09
A/ chicken /Pennsylvania/ 1370/83
15 HA (hemagglutinin) serotypes
9 NA (neuraminidase) serotypes
"Highly pathogenic avian influenza" H5 and H7
"Low pathogenic avian influenza" 13 other HAs

## **ANTIGENIC VARIATION**

 Surface HA and NA glycoproteins undergo frequent changes.

### Antigenic Drift

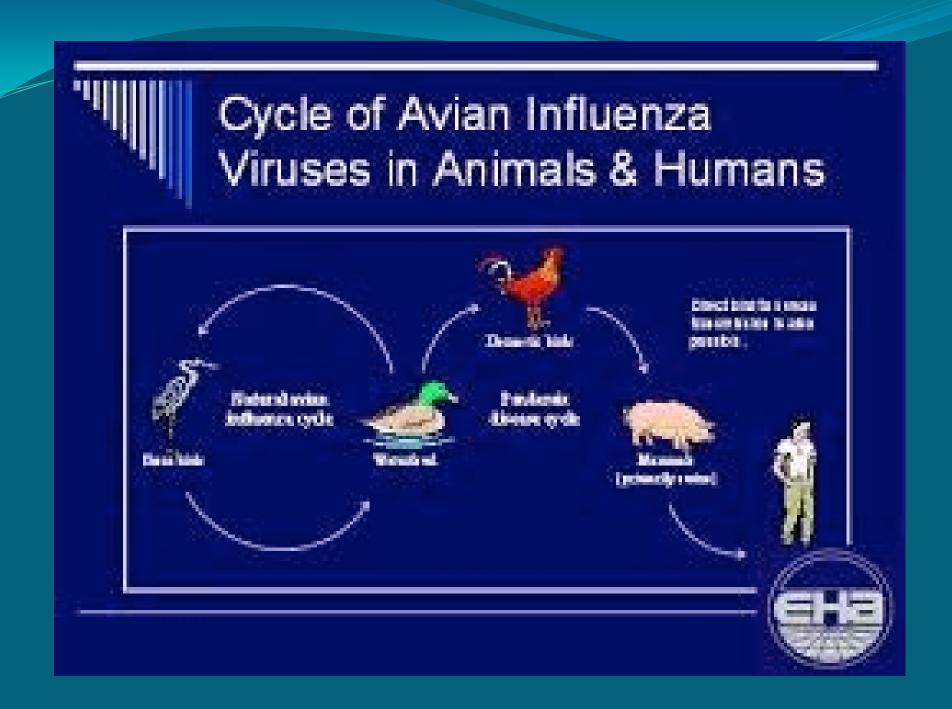
- Arises by point mutation. (vaccination pressure and
  - population density?)
- H5 and H7 strains of LPAI becoming HPAI
- Antigenic Shift
- Arises from genetic reassortment

## SIGNIFICANCE OF VIRAL SHIFT REASSORTMENTS

- A/goose/Taiwan/??/2015 H5N3
- Identified mid-January 2015
- H5 99% similar to 2014 H5N8 isolate involved in extensive outbreaks in S.Korea and Japan.
- N3 98% similar to 2010 H2N3 Taiwan isolate migratory ducks
- 2011 H1N3 Thailand isolate in waterfowl
- 2013 H5N3 Taiwan isolate migratory ducks

## **OIE CRITERIA FOR HPAI**

- 1. Al isolate lethal to +6/8 5-week SPF chickens receiving 0.2 ml 10<sup>-1</sup> allantoic fluid iv.
- 2. Any H5 or H7 isolate with a preponderance of basic amino acids at the HA cleavage site.
- 3. Any isolate other than an H5 or H7 lethal to 1 to 5 chickens and can be grown in cell culture without trypsin


# **SENSITIVITY OF AI VIRUS**

Inactivated by:-

- solvents and detergents
- aldehydes (formalin and gluteraldehyde)\*
- oxidizing agents (sodium hypochlorite 5%)\*
- chemical disinfectants (phenolics, QACs)\*
- \* ONLY if not protected by organic matter.
- Al virus can persist in liquid manure for 100 days in NE U.S winter

in feces for 30 days at 4° F

Susceptible to 90° F in "cleaned" houses for 1 week



## **ORIGIN OF AI VIRUS STRAINS**

- Role of Asia in evolution of AI strains
- Migratory waterfowl to domestic waterfowl
- Spread to chickens and mixing in hogs and other mammalian hosts in rural locations.
   Reassortment events ("shifts") occur to produce pandemic strains infecting humans. Can be induced under laboratory conditions.
- Endemic infection can lead to mutations ("drift") when introduced into areas with high population density-LPAI to HPAI.

#### COHABITATION OF DOMESTIC AND MIGRATORY WATERFOWL RESULTS IN TRANSMISSION AND DISSEMINATION OF HPAI



### **DISSEMINATION OF AI**

- Intercontinental and international:
- Migratory waterfowl and shore birds
- Uncooked poultry products
- Contaminated personnel
- Regional and local
- Movement of live poultry (LBM systems)
- Movement of contaminated personnel and
- equipment (fomites)
- Virus entrained on dust particles in air.
- Contaminated housing and waste

### LIVE BIRD MARKETS IN ASIA ARE ARE A SOURCE OF AI VIRUS FOR CONSUMERS AND A RESERVOIR FOR POULTRY FLOCKS



### **CLINICAL PRESENTATION OF HPAI**

- SHARP DROP IN WATER AND THEN FEED INTAKE
- CONCURRENT RAPID ASCENDING MORBIDITY
- RATE (10%; 40 % 80% CUMULATIVE ON SUCCESSIVE DAYS)
- LAYERS AND BREEDERS CEASE PRODUCTION (OVER 2 TO 3 DAYS, PRESENCE OF SHELL-LESS EGGS)
- SIMULTANEOUS RAPID ASCENT IN MORTALITY RATE (5%; 25%; 50% CUMULATIVE OVER SUCCESSIVE DAYS)
- TYPICAL SIGNS (PROSTRATION, RESPIRATORY DISTRESS, DIARRHEA, SWOLLEN CYANOTIC HEADS, SKIN HEMORRHAGES)

#### EXTENSIVE MORBIDITY IN FLOCK INFECTED WITH HPAI. RECUMBENCY, RESPIRATORY DISTRESS EVIDENT IN SMALL FLOCK



### RAPIDLY ASCENDING MORTALITY FOLLOWING HPAI INFECTION LEADS TO A "CARPET OF DEAD BIRDS"



## **CUTANEOUS LESIONS HPAI**



# SWOLLEN WATTLES, NECROSIS OF COMB WITH HPAI



### CHARACTERISTIC SUBCUTANEOUS HEMORRHAGES ON THE SHANKS OCCUR FOLLOWING HPAI INFECTION



## **LESIONS OF HPAI**

- EDEMATOUS, HEMORRHAGIC AND NECROTIC CHANGES IN ADNEXA (skin, wattles, comb, shanks)
- VISCERAL SEROSAL HEMORRHAGES
- FIBRINOUS PERITONITIS (NON-PERACUTE CASES)
- NOTE: GROSS LESIONS ARE NOT PATHOGNOMONIC. D/D INCLUDES vvND (END),
   COMBINATIONS OF vvIBD/ILT/LENTOGENIC ND

# **DIAGNOSIS OF HPAI**

- VIRAL ISOLATION:
- SPF CHICKEN EMBRYOS ALLANTOIC ROUTE WITH HI
- ANTIGEN-CAPTURE ASSAY (DIRECTIGEN®)
- VIRAL RNA:
- PCR ASSAY
- SEROLOGY:
- HEMAGGLUTINATION INHIBITION
- AGAR-GEL WELL AGGLUTINATION
- ELISA

### ELISA AI ANTIBODY TEST KITS AVAILABLE COMMERCIALLY

### Avian Influenza Virus Antibody Test Kit

in Piter Bargenetik für Denselsen 19 konnt Antibade in Anlan Anfansen Verse (1999) Sam for under 2 Novel (Sami un Antiba v Novel oppik) 21 sementing 22 1999) An enteren in sought pression 2 Ny Samine, 29 Sai Piter 2 Piter 2 Piter 2 Aug.

CHICKEN or

100

Careford - Si Kenya Lana Yon, 1 - Stano John, 1 v (Stan - Si Anadaka Tanan - Nasahari Jaka Tan - Nasahari Jak

Name and Address of the

### **PREVENTION AND CONTROL OF HPAI**

#### • EXOTIC TO NATION

EXCLUSION BY RESTRICTING IMPORTS RAPID DIAGNOSIS AND ERADICATION

(QUARANTINE, COMPENSATION, SURVEILLANCE, FLOCK DEPLETION AND DISPOSAL) REGIONAL CONTROL OF MOVEMENT (REGIONALIZATION AND COMPARTMENTALIZATION)

FARM BIOSECURITY

#### **ENDEMIC TO NATION**

REGIONALIZE AND RESTRICT INTERZONE MOVEMENT VACCINATE, VACCINATE, VACCINATE BIOSECURITY AS FAR AS PRACTICAL

### MASS DEPLETION OF FLOCKS IMPOSES RISKS OF INFECTION FOR WORKERS AND ALSO PROBLEMS OF DISPOSAL



# **VACCINATION AGAINST HPAI**

- INTRODUCTION OF AN EXOTIC INFECTION
- VACCINATION NOT RECOMMENDED.
- (PRESENCE OF ANTIBODIES PRECLUDE TRADE)
- PRESENCE OF ENDEMIC INFECTION
- INACTIVATED EMULSIONS (STABLE, HIGH ANTIGEN TITER)
- DIVA APPLIED IN ITALY H7N3 VACCINE AGAINST H7N1
- •
- **RECOMBINANT rHVT H5 PRODUCT DEVELOPED (CEVA)**
- NO LIVE ATTENUATED VACCINES!!!
- $\bullet$

I/M VACCINATION OF CHICKS WITH INACTIVATED EMULSION SUPPRESSES MORTALITY BUT DOES NOT ERADICATE INFECTION. LOW SHED RATE OF VIRUS FOLLOWING VACCINATION.



### VACCINATION OF INDIVIDUAL HENS IN THE FACE OF INFECTION IS LABORIOUS



# **TRADE CONSIDERATIONS**

- TO REGULATE TRADE, THE WTO (world trade organization) RECOGNIZES STANDARDS DEVELOPED BY THE OIE (world organization for animal health).
- CANNOT BAN TRADE IF SAME DISEASE OCCURS IN IMPORTING NATION
- •
- ALL H5 AND H7 AND HIGH-PATH ISOLATES TO BE REPORTED TO OIE 1 DAY FOLLOWING CONFIRMATION. OTHER AI ISOLATES AT ANNUAL INTERVALS.
   BILATERAL AGREEMENNTS EXIST BETWEEN NATIONS MANDATING DISCLOSURE OF LPAI
- SOME NATIONS (RUSSIA) USE AI AS AN EXCUSE FOR POLITICAL EMBARGOS
- MANY NATIONS (INDIA) USE AI TO PROTECT LOCAL PRODUCTION

QUESTIONS TO PONDER 1. CAN I APPLY THE BASICS OF AI VIRUS MOLECULAR BIOLOGY TO AN UNDERSTANDING OF THE DISEASE? 2. DO I UNDESTAND THE EPIDEMIOLOGY OF AI AND THE SIGNIFICANCE IN PREVENTION AND CONTROL?

3. AM I AWARE OF THE SOCIOECONOMIC IMPACT OF AI?

4. COULD I DEVELOP A PROGRAM TO ERADICATE EXOTIC AI?

5. COULD I APPLY THE PRINCIPLES ACQUIRED IN THIS REVIEW TO LIMIT INTRODUCTION AND DISSEMINATION OF AI?

# **THANK YOU**

# **QUESTIONS?**

# **COMMENTS!**